tupali/librerias/gantt/code/es-modules/modules/cylinder.src.js

345 lines
11 KiB
JavaScript
Raw Normal View History

2020-05-23 20:45:54 +00:00
/* *
*
* Highcharts cylinder - a 3D series
*
* (c) 2010-2020 Highsoft AS
*
* Author: Kacper Madej
*
* License: www.highcharts.com/license
*
* !!!!!!! SOURCE GETS TRANSPILED BY TYPESCRIPT. EDIT TS FILE ONLY. !!!!!!!
*
* */
'use strict';
import H from '../parts/Globals.js';
import Color from '../parts/Color.js';
var color = Color.parse;
import U from '../parts/Utilities.js';
var merge = U.merge, pick = U.pick, seriesType = U.seriesType;
import '../parts/ColumnSeries.js';
import '../parts/SvgRenderer.js';
var charts = H.charts, deg2rad = H.deg2rad, perspective = H.perspective,
// Work on H.Renderer instead of H.SVGRenderer for VML support.
RendererProto = H.Renderer.prototype, cuboidPath = RendererProto.cuboidPath, cylinderMethods;
// Check if a path is simplified. The simplified path contains only lineTo
// segments, whereas non-simplified contain curves.
var isSimplified = function (path) {
return !path.some(function (seg) { return seg[0] === 'C'; });
};
/**
* The cylinder series type.
*
* @requires module:highcharts-3d
* @requires module:modules/cylinder
*
* @private
* @class
* @name Highcharts.seriesTypes.cylinder
*
* @augments Highcharts.Series
*/
seriesType('cylinder', 'column',
/**
* A cylinder graph is a variation of a 3d column graph. The cylinder graph
* features cylindrical points.
*
* @sample {highcharts} highcharts/demo/cylinder/
* Cylinder graph
*
* @extends plotOptions.column
* @since 7.0.0
* @product highcharts
* @excluding allAreas, boostThreshold, colorAxis, compare, compareBase,
* dragDrop
* @requires modules/cylinder
* @optionparent plotOptions.cylinder
*/
{}, {},
/** @lends Highcharts.seriesTypes.cylinder#pointClass# */
{
shapeType: 'cylinder',
hasNewShapeType: H
.seriesTypes.column.prototype
.pointClass.prototype
.hasNewShapeType
});
/**
* A `cylinder` series. If the [type](#series.cylinder.type) option is not
* specified, it is inherited from [chart.type](#chart.type).
*
* @extends series,plotOptions.cylinder
* @since 7.0.0
* @product highcharts
* @excluding allAreas, boostThreshold, colorAxis, compare, compareBase
* @requires modules/cylinder
* @apioption series.cylinder
*/
/**
* An array of data points for the series. For the `cylinder` series type,
* points can be given in the following ways:
*
* 1. An array of numerical values. In this case, the numerical values will be
* interpreted as `y` options. The `x` values will be automatically
* calculated, either starting at 0 and incremented by 1, or from
* `pointStart` and `pointInterval` given in the series options. If the axis
* has categories, these will be used. Example:
* ```js
* data: [0, 5, 3, 5]
* ```
*
* 2. An array of arrays with 2 values. In this case, the values correspond to
* `x,y`. If the first value is a string, it is applied as the name of the
* point, and the `x` value is inferred.
* ```js
* data: [
* [0, 0],
* [1, 8],
* [2, 9]
* ]
* ```
*
* 3. An array of objects with named values. The following snippet shows only a
* few settings, see the complete options set below. If the total number of
* data points exceeds the series'
* [turboThreshold](#series.cylinder.turboThreshold), this option is not
* available.
*
* ```js
* data: [{
* x: 1,
* y: 2,
* name: "Point2",
* color: "#00FF00"
* }, {
* x: 1,
* y: 4,
* name: "Point1",
* color: "#FF00FF"
* }]
* ```
*
* @sample {highcharts} highcharts/chart/reflow-true/
* Numerical values
* @sample {highcharts} highcharts/series/data-array-of-arrays/
* Arrays of numeric x and y
* @sample {highcharts} highcharts/series/data-array-of-arrays-datetime/
* Arrays of datetime x and y
* @sample {highcharts} highcharts/series/data-array-of-name-value/
* Arrays of point.name and y
* @sample {highcharts} highcharts/series/data-array-of-objects/
* Config objects
*
* @type {Array<number|Array<(number|string),(number|null)>|null|*>}
* @extends series.column.data
* @product highcharts highstock
* @apioption series.cylinder.data
*/
// cylinder extends cuboid
cylinderMethods = merge(RendererProto.elements3d.cuboid, {
parts: ['top', 'bottom', 'front', 'back'],
pathType: 'cylinder',
fillSetter: function (fill) {
this.singleSetterForParts('fill', null, {
front: fill,
back: fill,
top: color(fill).brighten(0.1).get(),
bottom: color(fill).brighten(-0.1).get()
});
// fill for animation getter (#6776)
this.color = this.fill = fill;
return this;
}
});
RendererProto.elements3d.cylinder = cylinderMethods;
RendererProto.cylinder = function (shapeArgs) {
return this.element3d('cylinder', shapeArgs);
};
// Generates paths and zIndexes.
RendererProto.cylinderPath = function (shapeArgs) {
var renderer = this, chart = charts[renderer.chartIndex],
// decide zIndexes of parts based on cubiod logic, for consistency.
cuboidData = cuboidPath.call(renderer, shapeArgs), isTopFirst = !cuboidData.isTop, isFronFirst = !cuboidData.isFront, top = renderer.getCylinderEnd(chart, shapeArgs), bottom = renderer.getCylinderEnd(chart, shapeArgs, true);
return {
front: renderer.getCylinderFront(top, bottom),
back: renderer.getCylinderBack(top, bottom),
top: top,
bottom: bottom,
zIndexes: {
top: isTopFirst ? 3 : 0,
bottom: isTopFirst ? 0 : 3,
front: isFronFirst ? 2 : 1,
back: isFronFirst ? 1 : 2,
group: cuboidData.zIndexes.group
}
};
};
// Returns cylinder Front path
RendererProto.getCylinderFront = function (topPath, bottomPath) {
var path = topPath.slice(0, 3);
if (isSimplified(bottomPath)) {
var move = bottomPath[0];
if (move[0] === 'M') {
path.push(bottomPath[2]);
path.push(bottomPath[1]);
path.push(['L', move[1], move[2]]);
}
}
else {
var move = bottomPath[0], curve1 = bottomPath[1], curve2 = bottomPath[2];
if (move[0] === 'M' && curve1[0] === 'C' && curve2[0] === 'C') {
path.push(['L', curve2[5], curve2[6]]);
path.push(['C', curve2[3], curve2[4], curve2[1], curve2[2], curve1[5], curve1[6]]);
path.push(['C', curve1[3], curve1[4], curve1[1], curve1[2], move[1], move[2]]);
}
}
path.push(['Z']);
return path;
};
// Returns cylinder Back path
RendererProto.getCylinderBack = function (topPath, bottomPath) {
var path = [];
if (isSimplified(topPath)) {
var move = topPath[0], line2 = topPath[2];
if (move[0] === 'M' && line2[0] === 'L') {
path.push(['M', line2[1], line2[2]]);
path.push(topPath[3]);
// End at start
path.push(['L', move[1], move[2]]);
}
}
else {
if (topPath[2][0] === 'C') {
path.push(['M', topPath[2][5], topPath[2][6]]);
}
path.push(topPath[3], topPath[4]);
}
if (isSimplified(bottomPath)) {
var move = bottomPath[0];
if (move[0] === 'M') {
path.push(['L', move[1], move[2]]);
path.push(bottomPath[3]);
path.push(bottomPath[2]);
}
}
else {
var curve2 = bottomPath[2], curve3 = bottomPath[3], curve4 = bottomPath[4];
if (curve2[0] === 'C' && curve3[0] === 'C' && curve4[0] === 'C') {
path.push(['L', curve4[5], curve4[6]]);
path.push(['C', curve4[3], curve4[4], curve4[1], curve4[2], curve3[5], curve3[6]]);
path.push(['C', curve3[3], curve3[4], curve3[1], curve3[2], curve2[5], curve2[6]]);
}
}
path.push(['Z']);
return path;
};
// Retruns cylinder path for top or bottom
RendererProto.getCylinderEnd = function (chart, shapeArgs, isBottom) {
// A half of the smaller one out of width or depth (optional, because
// there's no depth for a funnel that reuses the code)
var depth = pick(shapeArgs.depth, shapeArgs.width), radius = Math.min(shapeArgs.width, depth) / 2,
// Approximated longest diameter
angleOffset = deg2rad * (chart.options.chart.options3d.beta - 90 +
(shapeArgs.alphaCorrection || 0)),
// Could be top or bottom of the cylinder
y = shapeArgs.y + (isBottom ? shapeArgs.height : 0),
// Use cubic Bezier curve to draw a cricle in x,z (y is constant).
// More math. at spencermortensen.com/articles/bezier-circle/
c = 0.5519 * radius, centerX = shapeArgs.width / 2 + shapeArgs.x, centerZ = depth / 2 + shapeArgs.z,
// points could be generated in a loop, but readability will plummet
points = [{
x: 0,
y: y,
z: radius
}, {
x: c,
y: y,
z: radius
}, {
x: radius,
y: y,
z: c
}, {
x: radius,
y: y,
z: 0
}, {
x: radius,
y: y,
z: -c
}, {
x: c,
y: y,
z: -radius
}, {
x: 0,
y: y,
z: -radius
}, {
x: -c,
y: y,
z: -radius
}, {
x: -radius,
y: y,
z: -c
}, {
x: -radius,
y: y,
z: 0
}, {
x: -radius,
y: y,
z: c
}, {
x: -c,
y: y,
z: radius
}, {
x: 0,
y: y,
z: radius
}], cosTheta = Math.cos(angleOffset), sinTheta = Math.sin(angleOffset), perspectivePoints, path, x, z;
// rotete to match chart's beta and translate to the shape center
points.forEach(function (point, i) {
x = point.x;
z = point.z;
// x = (x * cosθ z * sinθ) + centerX
// z = (z * cosθ + x * sinθ) + centerZ
points[i].x = (x * cosTheta - z * sinTheta) + centerX;
points[i].z = (z * cosTheta + x * sinTheta) + centerZ;
});
perspectivePoints = perspective(points, chart, true);
// check for sub-pixel curve issue, compare front and back edges
if (Math.abs(perspectivePoints[3].y - perspectivePoints[9].y) < 2.5 &&
Math.abs(perspectivePoints[0].y - perspectivePoints[6].y) < 2.5) {
// use simplied shape
path = this.toLinePath([
perspectivePoints[0],
perspectivePoints[3],
perspectivePoints[6],
perspectivePoints[9]
], true);
}
else {
// or default curved path to imitate ellipse (2D circle)
path = this.getCurvedPath(perspectivePoints);
}
return path;
};
// Returns curved path in format of:
// [ M, x, y, ...[C, cp1x, cp2y, cp2x, cp2y, epx, epy]*n_times ]
// (cp - control point, ep - end point)
RendererProto.getCurvedPath = function (points) {
var path = [['M', points[0].x, points[0].y]], limit = points.length - 2, i;
for (i = 1; i < limit; i += 3) {
path.push([
'C',
points[i].x, points[i].y,
points[i + 1].x, points[i + 1].y,
points[i + 2].x, points[i + 2].y
]);
}
return path;
};